Article Dans Une Revue Mathematics and Computers in Simulation Année : 2023

An asymptotic preserving kinetic scheme for the M1 model of linear transport

Résumé

Moment models with suitable closure can lead to accurate and computationally efficient solvers for particle transport. Hence, we propose a new asymptotic preserving scheme for the M1 model of linear transport that works uniformly for any Knudsen number. Our idea is to apply the M1 closure at the numerical level to an existing asymptotic preserving scheme for the corresponding kinetic equation, namely the Unified Gas Kinetic Scheme (UGKS) originally proposed in Mieussens (2013) and extended to linear transport in Xu and Huang (2010). A second order extension is suggested and validated. The generic nature of this method is also demonstrated in an application to the M2 model. Several test cases show the performances of this new scheme in both the M1 and M2 case.
Fichier principal
Vignette du fichier
Feugeas et al. - 2024 - An asymptotic preserving kinetic scheme for the M1.pdf (625) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04190560 , version 1 (29-08-2023)
hal-04190560 , version 2 (21-01-2025)

Licence

Identifiants

Citer

Jean-Luc Feugeas, Julien Mathiaud, Luc Mieussens, Thomas Vigier. An asymptotic preserving kinetic scheme for the M1 model of linear transport. Mathematics and Computers in Simulation, 2023, 226, pp.383-398. ⟨10.1016/j.matcom.2024.07.018⟩. ⟨hal-04190560v2⟩
51 Consultations
64 Téléchargements

Altmetric

Partager

More