Towards real-time calibration-free LIBS supported by machine learning - Complexe de recherche interprofessionnel en aerothermochimie
Article Dans Une Revue Spectrochimica Acta Part B: Atomic Spectroscopy Année : 2025

Towards real-time calibration-free LIBS supported by machine learning

Résumé

Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS) enables multi-elemental quantification without needing standards. This type of approach can be used to analyze complex samples containing traces or gradients of species. This type of diagnosis requires a high level of expertise, and is cumbersome to set up. These constraints limit its application to field diagnostics. Using the MERLIN generalized radiative transfer code, we are able to generate a diversified emission database with no dimensioning limitations. We show that training a convolutional residual network with such a database enables the quantification of 9 species, as well as evaluation of electron density and temperature, without any prior expertise at a rate greater than 10 Hz. The accuracy of this innovative method depends solely on the basic spectroscopic data (emission probabilities and Stark parameters), regardless of the thermodynamic conditions of the laser-induced plasma, as long as it is in Local Thermodynamic Equilibrium (LTE).
Fichier sous embargo
Fichier sous embargo
0 4 21
Année Mois Jours
Avant la publication
vendredi 23 mai 2025
Fichier sous embargo
vendredi 23 mai 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

irsn-04830381 , version 1 (11-12-2024)

Licence

Identifiants

Citer

Aurélien Favre, Alexis Abad, Alexandre Poux, Léo Gosse, Ahmad Berjaoui, et al.. Towards real-time calibration-free LIBS supported by machine learning. Spectrochimica Acta Part B: Atomic Spectroscopy, 2025, 224, pp.107082. ⟨10.1016/j.sab.2024.107082⟩. ⟨irsn-04830381⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More