Numerical investigation of a three-dimensional four field model for collisionless magnetic reconnection - Équipe Systèmes dynamiques : théories et applications Accéder directement au contenu
Article Dans Une Revue Communications in Nonlinear Science and Numerical Simulation Année : 2012

Numerical investigation of a three-dimensional four field model for collisionless magnetic reconnection

Résumé

In this paper we present the numerical investigation of a three-dimensional four field model for magnetic reconnection in collisionless regimes. The model describes the evolution of the magnetic flux and vorticity together with the perturbations of the parallel magnetic and velocity fields. We explored the different behavior of vorticity and current density structures in low and high $\beta$ regimes, $\beta$ being the ratio between the plasma and magnetic pressure. A detailed analysis of the velocity field advecting the relevant physical quantities is presented. We show that, as the reconnection process evolves, velocity layers develop and become more and more localized. The shear of these layers increases with time ending up with the occurrence of secondary instabilities of the Kelvin-Helmholtz type. We also show how the $\beta$ parameter influences the different evolution of the current density structures, that preserve for longer time a laminar behavior at smaller $\beta$ values. A qualitative explanation of the structures formation on the different $z$-sections is also presented.
Fichier principal
Vignette du fichier
Grasso_rev2.pdf (8.64 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00617464 , version 1 (29-08-2011)

Identifiants

  • HAL Id : hal-00617464 , version 1

Citer

D. Grasso, D. Borgogno, Emanuele Tassi. Numerical investigation of a three-dimensional four field model for collisionless magnetic reconnection. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, pp.2085. ⟨hal-00617464⟩
169 Consultations
142 Téléchargements

Partager

Gmail Facebook X LinkedIn More