Estimating probability densities from short samples: a parametric maximum likelihood approach - Équipe Systèmes dynamiques : théories et applications Access content directly
Journal Articles Physical Review E : Statistical, Nonlinear, and Soft Matter Physics Year : 1998

Estimating probability densities from short samples: a parametric maximum likelihood approach

Abstract

A parametric method similar to autoregressive spectral estimators is proposed to determine the probability density function (pdf) of a random set. The method proceeds by maximizing the likelihood of the pdf, yielding estimates that perform equally well in the tails as in the bulk of the distribution. It is therefore well suited for the analysis short sets drawn from smooth pdfs and stands out by the simplicity of its computational scheme. Its advantages and limitations are discussed.
Fichier principal
Vignette du fichier
Dudok-PhysRevE.58.pdf (156.09 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

hal-00823527 , version 1 (12-12-2019)

Identifiers

Cite

Thierry Dudok de Wit, E. Floriani. Estimating probability densities from short samples: a parametric maximum likelihood approach. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, 1998, 58 (4), pp.5115. ⟨10.1103/PhysRevE.58.5115⟩. ⟨hal-00823527⟩
157 View
63 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More