Loading...
Bienvenue dans la collection du Laboratoire de Mathématiques
J.A. Dieudonné - UMR 7351
A partir de cette page, vous pouvez :
- Accéder au site de la Bibliothèque du laboratoire
- Consulter l'ensemble des dépôts du laboratoire grâce au menu de gauche
- Déposer des publications sur HAL ou sur HAL Université Côte d'Azur
DERNIERS DÉPÔTS
NOMBRE DE DOCUMENTS
3 638
NOMBRE DE NOTICES
1 996
EVOLUTION DES DÉPÔTS
RÉPARTITION DES DÉPÔTS PAR TYPE DE DOCUMENT
Open Access LJAD
80 %
Mots clés
Turbulence
Nanophotonics
Hydrostatic reconstruction
Clustering
Euler equations
Optimization
Machine learning
Memristor
Chua attractor
Model selection
Friction
Inverse problems
Classification
Stabilité
Data completion
Fractional BV spaces
Co-clustering
Convergence
Finite volume method
Bifurcation
Microwave imaging
Finite volume scheme
Solitary waves
Fluid-structure interaction
Modeling
Adaptive estimation
Discontinuous Galerkin method
Finite element
Finite volumes
Rheology
Plasma equilibrium
Cauchy problem
Asymptotic analysis
Finite volume schemes
Discontinuous Galerkin methods
Inverse problem
Modélisation
Control
Overland flow
Energy conservation
Tokamak
Finite elements
Shallow water
Aerodynamics
Optimisation
Numerical analysis
Complexity
Convergence analysis
VOLUMES FINIS
Maxwell equations
Water waves
Bifurcation theory
Shape optimization
Small divisors
Mathematical model
Parallel computing
Bifurcations
Finite element method
Partial differential equations
Chaos
Segmentation
Blow-up
Deep learning
Numerical simulation
Stability
Simulation
Operad
Volumes finis
Consistency
Dynamical systems
Discontinuous Galerkin
Maxwell's equations
PDE
Hyperbolic systems
Density estimation
Hawkes process
Interacting particle systems
Metasurface
Controllability
Shallow water equations
Conservation laws
Modelling
Automatic differentiation
Finite volume methods
Interpolation
Optimal control
Boundary conditions
Operads
Game theory
Cryptography
Domain decomposition
Descent direction
Normal forms
Finite Volume
Wave propagation
Excursion sets
Équations de Maxwell
Scalar conservation laws
Finite volume
Macroscopic traffic flow models