index - Laboratoire Jean-Alexandre Dieudonné Accéder directement au contenu
Bienvenue dans la collection du Laboratoire de Mathématiques
J.A. Dieudonné - UMR 7351




A partir de cette page, vous pouvez :

 

DERNIERS DÉPÔTS

Chargement de la page

 


 

NOMBRE DE DOCUMENTS

3 403

NOMBRE DE NOTICES

1 957

EVOLUTION DES DÉPÔTS

RÉPARTITION DES DÉPÔTS PAR TYPE DE DOCUMENT

Open Access LJAD

79 %

 

Mots clés

Optimal control Operads Shallow water Adaptive estimation Deep learning Optimisation Interacting particle systems Overland flow Gibbs distributions Euler equations Scalar conservation laws Friction Energy conservation Water waves Tokamak Hybridizable discontinuous Galerkin method Finite volume Chaos Turbulence Fractional BV spaces Domain decomposition Plasma equilibrium Modelling Neuroscience Finite volume methods Shape optimization Convergence analysis Domain decomposition methods Data completion Rheology Consistency Finite Volume Wave propagation EDP Normal forms Stabilité Solitary waves Numerical analysis Density estimation Blow-up Nash game Interpolation Bifurcations Discontinuous Galerkin methods Descent direction Model selection Harmonic numbers Bifurcation theory Excursion sets Discontinuous Galerkin Modeling PDE Aerodynamics Hyperbolic systems Nanophotonics Finite element Automatic differentiation Classification Operad Simulation Maxwell equations Inverse problems Volumes finis Asymptotic analysis Finite elements Entropy solution Electromagnetics Numerical simulation Finite volumes Shallow water equations Controllability Game theory Finite volume method Stability Optimization Modélisation Hydrostatic reconstruction Machine learning Conservation laws Segmentation Small divisors Discontinuous Galerkin method Finite volume schemes Nonlinear vibrations VOLUMES FINIS Clustering Maxwell's equations Cauchy problem Boundary conditions Magnetohydrodynamics Dynamical systems Inverse problem Finite volume scheme Partial differential equations Fluid-structure interaction Parallel computing Convergence Complexity Finite element method Macroscopic traffic flow models