index - Laboratoire Jean-Alexandre Dieudonné Accéder directement au contenu
Bienvenue dans la collection du Laboratoire de Mathématiques
J.A. Dieudonné - UMR 7351




A partir de cette page, vous pouvez :

 

DERNIERS DÉPÔTS

Chargement de la page

 


 

NOMBRE DE DOCUMENTS

3 369

NOMBRE DE NOTICES

1 939

EVOLUTION DES DÉPÔTS

RÉPARTITION DES DÉPÔTS PAR TYPE DE DOCUMENT

Open Access LJAD

79 %

 

Mots clés

Parallel computing Maxwell equations Water waves Fluid-structure interaction Model selection Solitary waves Dynamical systems Optimisation VOLUMES FINIS Modeling Gibbs distributions Adaptive estimation Discontinuous Galerkin Deep learning Interpolation Conservation laws Optimization Bifurcations Entropy solution Chaos Normal form Finite element EDP Consistency Scalar conservation laws Machine learning Blow-up Macroscopic traffic flow models Finite volume methods Hybridizable discontinuous Galerkin method Aerodynamics Finite Volume Hyperbolic systems Friction Simulation Volumes finis Excursion sets Overland flow Finite volumes Nonlinear water waves Boundary conditions Domain decomposition Operads Descent direction Convergence Electromagnetics Fractional BV spaces Finite elements Interacting particle systems Harmonic numbers Density estimation Stabilité Nanophotonics Complexity Shape optimization Rheology Tokamak Plasma equilibrium Finite volume scheme Numerical simulation Wave propagation Nonlinear vibrations Game theory Small divisors Hydrostatic reconstruction Stability Finite volume method Convergence analysis Controllability Asymptotic analysis Bifurcation theory Discontinuous Galerkin methods Finite element method Domain decomposition methods Shallow water equations Modelling Partial differential equations Nash game Clustering Inverse problems Data completion Energy conservation PDE Inverse problem Finite volume Modélisation Turbulence Optimal control Magnetohydrodynamics Numerical analysis Discontinuous Galerkin method Maxwell's equations Classification Normal forms Shallow water Euler equations Neuroscience Segmentation Cauchy problem Finite volume schemes