Loading...
Bienvenue dans la collection du Laboratoire de Mathématiques
J.A. Dieudonné - UMR 7351
A partir de cette page, vous pouvez :
- Accéder au site de la Bibliothèque du laboratoire
- Consulter l'ensemble des dépôts du laboratoire grâce au menu de gauche
- Déposer des publications sur HAL ou sur HAL Université Côte d'Azur
DERNIERS DÉPÔTS

NOMBRE DE DOCUMENTS
3 403
NOMBRE DE NOTICES
1 957
EVOLUTION DES DÉPÔTS
RÉPARTITION DES DÉPÔTS PAR TYPE DE DOCUMENT
Open Access LJAD
79 %
Mots clés
Optimal control
Operads
Shallow water
Adaptive estimation
Deep learning
Optimisation
Interacting particle systems
Overland flow
Gibbs distributions
Euler equations
Scalar conservation laws
Friction
Energy conservation
Water waves
Tokamak
Hybridizable discontinuous Galerkin method
Finite volume
Chaos
Turbulence
Fractional BV spaces
Domain decomposition
Plasma equilibrium
Modelling
Neuroscience
Finite volume methods
Shape optimization
Convergence analysis
Domain decomposition methods
Data completion
Rheology
Consistency
Finite Volume
Wave propagation
EDP
Normal forms
Stabilité
Solitary waves
Numerical analysis
Density estimation
Blow-up
Nash game
Interpolation
Bifurcations
Discontinuous Galerkin methods
Descent direction
Model selection
Harmonic numbers
Bifurcation theory
Excursion sets
Discontinuous Galerkin
Modeling
PDE
Aerodynamics
Hyperbolic systems
Nanophotonics
Finite element
Automatic differentiation
Classification
Operad
Simulation
Maxwell equations
Inverse problems
Volumes finis
Asymptotic analysis
Finite elements
Entropy solution
Electromagnetics
Numerical simulation
Finite volumes
Shallow water equations
Controllability
Game theory
Finite volume method
Stability
Optimization
Modélisation
Hydrostatic reconstruction
Machine learning
Conservation laws
Segmentation
Small divisors
Discontinuous Galerkin method
Finite volume schemes
Nonlinear vibrations
VOLUMES FINIS
Clustering
Maxwell's equations
Cauchy problem
Boundary conditions
Magnetohydrodynamics
Dynamical systems
Inverse problem
Finite volume scheme
Partial differential equations
Fluid-structure interaction
Parallel computing
Convergence
Complexity
Finite element method
Macroscopic traffic flow models