Dynamics and spike trains statistics in conductance-based Integrate-and-Fire neural networks with chemical and electric synapses - Laboratoire Jean-Alexandre Dieudonné Accéder directement au contenu
Poster De Conférence BMC Neuroscience Année : 2013

Dynamics and spike trains statistics in conductance-based Integrate-and-Fire neural networks with chemical and electric synapses

Résumé

We investigate the effect of electric synapses (gap junctions) on collective neuronal dynamics and spike statistics in a conductance-based Integrate-and-Fire neural network, driven by a Brownian noise, where conductances depend upon spike history. We compute explicitly the time evolution operator and show that, given the spike-history of the network and the membrane potentials at a given time, the further dynamical evolution can be written in a closed form. We show that spike train statistics is described by a Gibbs distribution whose potential can be approximated with an explicit formula, when the noise is weak. This potential form encompasses existing models for spike trains statistics analysis such as maximum entropy models or Generalized Linear Models (GLM). We also discuss the different types of correlations: those induced by a shared stimulus and those induced by neurons interactions.
Fichier principal
Vignette du fichier
1471-2202-14-S1-P58.pdf (62.92 Ko) Télécharger le fichier
1471-2202-14-S1-P58.xml (7.17 Ko) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Format : Autre
Loading...

Dates et versions

hal-00842297 , version 1 (08-07-2013)

Identifiants

  • HAL Id : hal-00842297 , version 1

Citer

Rodrigo Cofre, Bruno Cessac. Dynamics and spike trains statistics in conductance-based Integrate-and-Fire neural networks with chemical and electric synapses. Twenty Second Annual Computational Neuroscience Meeting : CNS 2013, Jul 2013, Paris, France. 14 (Suppl 1), pp.P58, 2013. ⟨hal-00842297⟩
175 Consultations
161 Téléchargements

Partager

Gmail Facebook X LinkedIn More