Valorization of AZ91 by the hydrolysis reaction for hydrogen production (Electrochemical approach) - Institut de chimie de la matière condensée de Bordeaux Accéder directement au contenu
Article Dans Une Revue Journal of Magnesium and Alloys Année : 2021

Valorization of AZ91 by the hydrolysis reaction for hydrogen production (Electrochemical approach)

Résumé

The hydrolysis of Mg-based materials appears to be an ideal solution for clean energy production. Green hydrogen was produced by the hydrolysis reaction of a "standard" AZ91 alloy (called AZ91 in the following) in "model" seawater solution. Two milling speeds (i.e. 250 rpm and 350 rpm) were tested to enhance the reactivity of AZ91. Graphite and AlCl 3 were used as ball milling additives. Milling at higher rotational speed is more energetic, hence it ameliorates the most the hydrolysis performance of AZ91. Comparing both milling additives, AlCl 3 enhances the most the hydrolysis of AZ91 with a generation of 65% of its theoretical H 2 generation capacity. The best material was obtained by milling AZ91 at 350 rpm with graphite for 2 h followed by a further milling with AlCl 3 for 2 h-a yield of 75% of its theoretical H 2 generation capacity was reached within a few minutes. The corrosion behavior of milled AZ91 was investigated by anodic polarization and electrochemical impedance spectroscopy (EIS). The calculated electrochemical parameters from EIS fitting of two materials milled under different conditions but with the same milling additive are approximately the same. This suggests that, in order to fully evaluate the reactivity of AZ91, hydrolysis, anodic polarization and EIS must be considered.

Domaines

Matériaux
Fichier principal
Vignette du fichier
AlBachaS_JMagnAlloys_2021.pdf (2.71 Mo) Télécharger le fichier
Origine : Publication financée par une institution

Dates et versions

hal-03467751 , version 1 (06-12-2021)

Identifiants

Citer

Serge Al Bacha, Isabelle Aubert, Mirvat Zakhour, Michel Nakhl, Jean-Louis Bobet. Valorization of AZ91 by the hydrolysis reaction for hydrogen production (Electrochemical approach). Journal of Magnesium and Alloys, 2021, 9 (6), pp.1942-1953. ⟨10.1016/j.jma.2020.12.007⟩. ⟨hal-03467751⟩
29 Consultations
26 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More