Pré-Publication, Document De Travail Année : 2025

Biharmonic Hypersurfaces in Euclidean Spaces

Résumé

An isometric immersion $X: \Sigma^n \longrightarrow \mathbb{E}^{n+1}$ is biharmonic if $\Delta^2 X = 0$, i.e. if $\Delta H =0$, where $\Delta$ and $H$ are the metric Laplacian and the mean curvature vector field of $\Sigma^n$ respectively. More generally, biconservative hypersurfaces (BCH) are isometric immersions for which only the tangential part of the biharmonic equation vanishes. We study and construct BCH that are holonomic, i.e. for which the principal curvature directions define an integrable net, and we deduce that $\Sigma^n$ is a holonomic biharmonic hypersurface iff it is minimal.
Fichier principal
Vignette du fichier
biharmonic.arxiv.pdf (265) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04953597 , version 1 (18-02-2025)

Identifiants

Citer

Hiba Bibi, Marc Soret, Marina Ville. Biharmonic Hypersurfaces in Euclidean Spaces. 2025. ⟨hal-04953597⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More