Series solution method for the reaction-diffusion equation over finite intervals - Institut Jean Le Rond d'Alembert
Journal Articles Thermodynamique des interfaces et mécanique des fluides Year : 2024

Series solution method for the reaction-diffusion equation over finite intervals

Méthode de solution en série pour l’équation de réaction-diffusion sur les intervalles finis

Edoh Tossou
  • Function : Correspondent author
  • PersonId : 1407740

Connectez-vous pour contacter l'auteur
Kwassi Anani
Roger Prud'Homme

Abstract

This paper makes a contribution by generalizing the classical series solution for initial boundary value problems of the one-dimensional reaction-diffusion equation on any finite interval of the real line. The general form of the equation is considered on a generic bounded interval and is subjected in the unified way to the three classical boundary conditions, namely the Neumann, Dirichlet, and Robin boundary conditions. The Fourier decomposition method, is used to derive the solution of the resulting homogeneous equation with zero boundary conditions. Subsequently, the solution of the nonhomogeneous equation with homogeneous boundary conditions is obtained using the Duhamel's principle. Finally, the solution of the general problem is obtained as a convergent series over the considered interval, with the construction of an auxiliary. The Hopf-Cole transformation has facilitated the generalization of the exact solution of the Burger’s equation to generic intervals, as demonstrated by the described method.
Fichier principal
Vignette du fichier
Manusc_Tossou_react-diffus_Corrige_RP.pdf (324.13 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04671650 , version 1 (20-08-2024)

Identifiers

Cite

Edoh Tossou, Kwassi Anani, Roger Prud'Homme. Series solution method for the reaction-diffusion equation over finite intervals. Thermodynamique des interfaces et mécanique des fluides, 2024, 7 (1), ⟨10.21494/ISTE.OP.2024.1191⟩. ⟨hal-04671650⟩
16 View
16 Download

Altmetric

Share

More