Local contractions regulate E-cadherin rigidity sensing - Institut Jacques Monod Access content directly
Journal Articles Science Advances Year : 2022

Local contractions regulate E-cadherin rigidity sensing


E-cadherin is a major cell-cell adhesion molecule involved in mechanotransduction at cell-cell contacts in tissues. Because epithelial cells respond to rigidity and tension in tissue through E-cadherin, there must be active processes that test and respond to the mechanical properties of these adhesive contacts. Using submicrometer, E-cadherin–coated polydimethylsiloxane pillars, we find that cells generate local contractions between E-cadherin adhesions and pull to a constant distance for a constant duration, irrespective of pillar rigidity. These cadherin contractions require nonmuscle myosin IIB, tropomyosin 2.1, α-catenin, and binding of vinculin to α-catenin. Cells spread to different areas on soft and rigid surfaces with contractions, but spread equally on soft and rigid without. We further observe that cadherin contractions enable cells to test myosin IIA–mediated tension of neighboring cells and sort out myosin IIA–depleted cells. Thus, we suggest that epithelial cells test and respond to the mechanical characteristics of neighboring cells through cadherin contractions.
Fichier principal
Vignette du fichier
sciadv.abk0387.pdf (2.25 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

hal-03854134 , version 1 (18-11-2022)



Yi-An Yang, Emmanuelle Nguyen, Gautham Hari Narayana Sankara Narayana, Melina Heuzé, Chaoyu Fu, et al.. Local contractions regulate E-cadherin rigidity sensing. Science Advances , 2022, 8 (4), ⟨10.1126/sciadv.abk0387⟩. ⟨hal-03854134⟩
12 View
52 Download



Gmail Facebook Twitter LinkedIn More