Article Dans Une Revue Journal of Functional Analysis Année : 2024

Random Carleson sequences for the Hardy space on the polydisc and the unit ball

Résumé

We study the Kolmogorov 0 -1 law for a random sequence with prescribed radii so that it generates a Carleson measure almost surely, both for the Hardy space on the polydisc and the Hardy space on the unit ball, thus providing improved versions of previous results of the first two authors and of a separate result of Massaneda. In the polydisc, the geometry of such sequences is not well understood, so we proceed by studying the random Gramians generated by random sequences, using tools from the theory of random matrices. Another result we prove, and that is of its own relevance, is the 0 -1 law for a random sequence to be partitioned into M separated sequences with respect to the pseudo-hyperbolic distance, which is used also to describe the random sequences that are interpolating for the Bloch space on the unit disc almost surely.

Fichier principal
Vignette du fichier
A_Note_on_Random_Interpolating_Sequences.pdf (471) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04942352 , version 1 (12-02-2025)

Licence

Identifiants

Citer

Nikolaos Chalmoukis, Alberto Dayan, Giuseppe Lamberti. Random Carleson sequences for the Hardy space on the polydisc and the unit ball. Journal of Functional Analysis, 2024, 287 (12), pp.110659. ⟨10.1016/j.jfa.2024.110659⟩. ⟨hal-04942352⟩

Collections

CNRS IMB INSMI
0 Consultations
0 Téléchargements

Altmetric

Partager

More