On the space of subgroups of Baumslag-Solitar groups I: perfect kernel and phenotype - Institut de Mathématiques de Jussieu
Pré-Publication, Document De Travail Année : 2024

On the space of subgroups of Baumslag-Solitar groups I: perfect kernel and phenotype

Résumé

Given a Baumslag-Solitar group, we study its space of subgroups from a topological and dynamical perspective. We first determine its perfect kernel (the largest closed subset without isolated points). We then bring to light a natural partition of the space of subgroups into one closed subset and countably many open subsets that are invariant under the action by conjugation. One of our main results is that the restriction of the action to each piece is topologically transitive. This partition is described by an arithmetically defined function, that we call the phenotype, with values in the positive integers or infinity. We eventually study the closure of each open piece and also the closure of their union. We moreover identify in each phenotype a (the) maximal compact invariant subspace.
Fichier principal
Vignette du fichier
BS.pdf (829.78 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03829832 , version 1 (25-10-2022)
hal-03829832 , version 2 (26-10-2022)
hal-03829832 , version 3 (13-11-2024)

Identifiants

Citer

Alessandro Carderi, Damien Gaboriau, François Le Maître, Yves Stalder. On the space of subgroups of Baumslag-Solitar groups I: perfect kernel and phenotype. 2024. ⟨hal-03829832v3⟩
109 Consultations
57 Téléchargements

Altmetric

Partager

More