On Kazhdan-Yom Din asymptotic Schur orthogonality for K-finite matrix coefficients - Institut de Mathématiques de Jussieu
Pré-Publication, Document De Travail Année : 2023

On Kazhdan-Yom Din asymptotic Schur orthogonality for K-finite matrix coefficients

Résumé

In a recent article, D. Kazhdan and A. Yom Din conjectured the validity of an asymptotic form of Schur's orthogonality for tempered irreducible unitary representations of semisimple groups defined over local fields. In the non-Archimedean case, they established such an orthogonality for $K$-finite matrix coefficients. Building on their work, and exploiting the admissibility of irreducible unitary representations, we prove the analogous result in the Archimedean case.
Fichier principal
Vignette du fichier
2304.11417v2.pdf (395.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04781699 , version 1 (15-11-2024)

Identifiants

Citer

Anne-Marie Aubert, Alfio Fabio La Rosa. On Kazhdan-Yom Din asymptotic Schur orthogonality for K-finite matrix coefficients. 2024. ⟨hal-04781699⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More