True Circular Dichroism in Optically Active Achiral Metasurfaces and Its Relation to Chiral Near-Fields - Institut des Nanosciences de Paris Access content directly
Journal Articles ACS Applied Optical Materials Year : 2023

True Circular Dichroism in Optically Active Achiral Metasurfaces and Its Relation to Chiral Near-Fields

Abstract

Optically active achiral metasurfaces offer a promising way to detect chiral molecules based on chiroptic methods. The combination of plasmonic enhanced circular dichroism and reversible optical activity would boost the sensitivity and provide enantiomerselective surfaces while using a single sensing site. In this work, we use metasurfaces containing arrays of U-shaped resonators as a benchmark for analyzing the optical activity of achiral materials. Although the peculiar optical activity of these metasurfaces has 1 been quite well described, we present here an experimental and numerical quantitative determination of the different contributions to the measured optical activity. In particular, it is shown that linear birefringence and retardance contribute, but only marginally, to the apparent circular dichroism of the metasurface associated with the excitation of magnetoelectric modes. We then numerically demonstrate the peculiar near-field properties of the magneto-electric modes and explain how these properties could be reflected in the far-field polarimetric properties in the presence of chiral molecules. This work provides alternatives for the detection scheme of chiral molecules using plasmonic resonators.
Fichier principal
Vignette du fichier
Body_revised.pdf (745.44 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
licence : Public Domain

Dates and versions

hal-04183908 , version 1 (21-08-2023)

Licence

Public Domain

Identifiers

Cite

Mathieu Nicolas, Per Magnus Walmsness, Jayeeta Amboli, Lu Zhang, Guillaume Demesy, et al.. True Circular Dichroism in Optically Active Achiral Metasurfaces and Its Relation to Chiral Near-Fields. ACS Applied Optical Materials, 2023, ⟨10.1021/acsaom.3c00136⟩. ⟨hal-04183908⟩
13 View
7 Download

Altmetric

Share

Gmail Facebook X LinkedIn More