Communication Dans Un Congrès Année : 2023

Co-location Pattern Mining Under the Spatial Structure Constraint

Résumé

Most methods to find spatial co-location patterns (subsets of object features that are geographically close to one another) employ standard proximity measures (e.g. Euclidean distance). But for some applications, these measures do not work well since the spatial structure is not considered. This article proposes CSS-Miner, a co-location pattern mining approach under the spatial structure constraint. In this case, the street network of a city is used as a constraint. CSS-Miner has been applied to two real datasets with different points of interest.
Fichier principal
Vignette du fichier
shortPaper.pdf (367) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04945558 , version 1 (13-02-2025)

Identifiants

Citer

Rodrigue Govan, Nazha Selmaoui-Folcher, Aristotelis Giannakos, Philippe Fournier-Viger. Co-location Pattern Mining Under the Spatial Structure Constraint. Database and Expert Systems Applications (DEXA 2023), Strauss, C.; Amagasa, T.; Kotsis, G.; Tjoa, A.M.; Khalil, I., Aug 2023, Penang, Malaysia. pp.186-193, ⟨10.1007/978-3-031-39847-6_13⟩. ⟨hal-04945558⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More