SWIFT: Semantic Watermarking for Image Forgery Thwarting - Irisa
Communication Dans Un Congrès Année : 2024

SWIFT: Semantic Watermarking for Image Forgery Thwarting

Résumé

This paper proposes a novel approach towards image authentication and tampering detection by using watermarking as a communication channel for semantic information. We modify the HiDDeN deep-learning watermarking architecture to embed and extract high-dimensional real vectors representing image captions. Our method improves significantly robustness on both malign and benign edits. We also introduce a local confidence metric correlated with Message Recovery Rate, enhancing the method's practical applicability. This approach bridges the gap between traditional watermarking and passive forensic methods, offering a robust solution for image integrity verification. The code is available at https://github.com/gautierevn/swift_watermarking.
Fichier principal
Vignette du fichier
SWIFT___Semantic_Watermarking_for_Image_Forgery_Thwarting.pdf (6.23 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04728070 , version 1 (09-10-2024)

Licence

Identifiants

  • HAL Id : hal-04728070 , version 1

Citer

Gautier Evennou, Vivien Chappelier, Ewa Kijak, Teddy Furon. SWIFT: Semantic Watermarking for Image Forgery Thwarting. WIFS 2024 - 16th IEEE International Workshop on Information Forensics and Security, IEEE, Dec 2024, Roma, Italy. pp.1-6. ⟨hal-04728070⟩
19 Consultations
10 Téléchargements

Partager

More