WaterMax: breaking the LLM watermark detectability-robustness-quality trade-off - Irisa
Communication Dans Un Congrès Année : 2024

WaterMax: breaking the LLM watermark detectability-robustness-quality trade-off

Résumé

Watermarking is a technical means to dissuade malfeasant usage of Large Language Models. This paper proposes a novel watermarking scheme, so-called WaterMax, that enjoys high detectability while sustaining the quality of the generated text of the original LLM. Its new design leaves the LLM untouched (no modification of the weights, logits, temperature, or sampling technique). WaterMax balances robustness and complexity contrary to the watermarking techniques of the literature inherently provoking a trade-off between quality and robustness. Its performance is both theoretically proven and experimentally validated. It outperforms all the SotA techniques under the most complete benchmark suite.
Fichier principal
Vignette du fichier
17001_WaterMax_breaking_the_LL.pdf (992.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04766606 , version 1 (05-11-2024)

Licence

Identifiants

  • HAL Id : hal-04766606 , version 1

Citer

Eva Giboulot, Teddy Furon. WaterMax: breaking the LLM watermark detectability-robustness-quality trade-off. NeurIPS 2024 - 38th Conference on Neural Information Processing Systems, Dec 2024, Vancouver, Canada. pp.1-34. ⟨hal-04766606⟩
0 Consultations
0 Téléchargements

Partager

More