Oxidation Catalysis by Rationally Designed Artificial Metalloenzymes - BIG - Chimie et Biologie des Métaux (CBM) Accéder directement au contenu
Article Dans Une Revue Israel Journal of Chemistry Année : 2015

Oxidation Catalysis by Rationally Designed Artificial Metalloenzymes

Résumé

The principle of enzyme mimics has been raised to its pinnacle by the design of hybrids made from inorganic complexes embedded into biomolecules. The present review focuses on the design of artificial metalloenzymes for oxidation reactions by oxygen transfer reactions, with a special focus on proteins anchoring inorganic complexes or metal ions via supramolecular interactions. Such reactions are of great interest for the organic synthesis of building blocks. In the first part, following an overview of the different design of artificial enzymes, the review presents contributions to the rational design of efficient hybrid biocatalysts via supramolecular host/guest approaches, based on the nature of the inorganic complex and the nature of the protein, with special attention to the substrate binding. In the second part, the original purpose of artificial metalloenzymes has been twisted to enable the observation of transient intermediates, to decipher metal-based oxidation mechanisms. The host protein crystals have been used as crystalline molecular-scale vessels, within which inorganic catalytic reactions have been followed, thanks to X-ray crystallography. These hybrids should be an alternative to enzymes for sustainable chemistry.

Dates et versions

hal-01165089 , version 1 (18-06-2015)

Identifiants

Citer

Caroline Marchi- Delapierre, Laurianne Rondot, Christine Cavazza, Stéphane Ménage. Oxidation Catalysis by Rationally Designed Artificial Metalloenzymes. Israel Journal of Chemistry, 2015, 55 (1 SI), pp.61-75. ⟨10.1002/ijch.201400110⟩. ⟨hal-01165089⟩
68 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More