Heterogeneous heat flux from mantle convection simulations : impact on the geodynamo and magnetic reversals
Flux de chaleur hétérogène dans des simulations de convection mantellique : impact sur la géodynamo et les inversions magnétiques
Résumé
The Earth’s magnetic field is generated within the Earth’s core, where convective motions ofthe electrically conducting liquid iron result in a dynamo action. This process, called the geodynamo,has been maintaining a magnetic field for billion of years. Paleomagnetic evidence showsthat the behaviour of the geodynamo has changed during geological times. These behaviourchanges are visible through variations in the strength and stability of the magnetic dipole. Variationsin the heat flux at the core-mantle boundary (CMB) due to mantle convection have beensuggested as one possible mechanism capable of driving such a change of behaviour.Numerical models of mantle convection and of the geodynamo have made significant improvementsin the recent years. Coupling mantle convection models and geodynamo models cangive insights into how the geodynamo reacts to variations in the CMB heat flux. Our current understandingof this thermal coupling between the mantle and the core is nonetheless restricted bylimitations in numerical models on both the mantle and core side. On the mantle side, the orientationof the mantle with respect to the spin axis has to be better constrained in order to exploitrecent simulations reproducing about 1 Gyr of mantle convection. Constraining this orientationrequires to align the maximum inertia axis of the mantle with the spin axis of the Earth, causingsolid-body rotations of the mantle called true polar wander (TPW). On the core side, numericalsimulations are still far from the parameter regime of the Earth, and it is not clear whether thereversing mechanism observed in these models is relevant for the Earth’s core.This work aims at acquiring a more complete understanding of how lateral heterogeneitiesof the CMB heat flux affect the geodynamo. In a first part, we explore the impact of TPW onthe CMB heat flux using two recently published mantle convection models: one model drivenby a plate reconstruction and a second that self-consistently produces a plate-like behaviour. Wecompute the geoid in both models to correct for TPW. An alternative to TPW correction is used forthe plate-driven model by simply repositioning the model in the original paleomagnetic referenceframe of the plate reconstruction. We find that in the plate-driven mantle convection model, themaximum inertia axis does not show a long-term consistency with the position of the magneticdipole inferred from paleomagnetism. TPW plays an important role in redistributing the CMBheat flux, notably at short time scales (≤ 10 Myr). Those rapid variations modify the latitudinaldistribution of the CMB heat flux. A principal component analysis (PCA) is computed to obtainthe dominant CMB heat flux patterns in the models.In a second part, we study the impact of heterogeneous heat flux conditions at the top of thecore in geodynamo models that expands towards more Earth-like parameter regimes than previouslydone. We especially focus on the heat flux distribution between the poles and the equator.More complex patterns extracted from the mantle convection models are also used. We show thatan equatorial cooling of the core is the most efficient at destabilizing the magnetic dipole, while apolar cooling of the core tends to stabilize the dipole. The observed effects of heterogeneous heatflux patterns are explained through the compatibility of thermal winds generated by the heat fluxpattern with zonal flows. Notably, heat flux patterns have a more moderate effect when westwardzonal flows are strong, with a destabilization of the dipole only for unrealistically large amplitudes.A parameter controlling the strength and stability of the magnetic dipole that is consistentwith the reversing behaviour of the geodynamo is suggested.i
Le champ magnétique terrestre est généré par la convection du fer liquide dans le noyau, éléctriquementconducteur, produisant un effet dynamo. Ce processus, appelé géodynamo, maintientun champ magnétique depuis des milliards d’années. Les données paléomagnétiques montrent quele comportement de la géodynamo a changé au cours des temps géologiques. Ces changementsde comportement sont visibles à travers les variations de l’amplitude et de la stabilité du dipôlemagnétique. Les variations du flux de chaleur à la limite entre le noyau et le manteau (CMB) duesà la convection mantellique ont été suggérées comme un mécanisme capable d’entraîner un telchangement de comportement.Les modèles numériques de convection mantellique et de la géodynamo ont connu des améliorationssignificatives ces dernières années. Le couplage entre ces deux types de modèle peutdonner des indications sur la façon dont la géodynamo réagit aux variations de flux de chaleurà la CMB. Notre compréhension actuelle de ce couplage entre le manteau et le noyau est néanmoinsrestreinte par les limitations des modèles numériques. Du côté du manteau, l’orientationdu manteau par rapport à l’axe de rotation doit être mieux contrainte afin d’exploiter les récentessimulations reproduisant environ 1 Gyr de convection mantellique. Pour contraindre cette orientation,l’axe de plus grand moment d’inertie du manteau doit être aligné avec l’axe de rotation de laTerre, ce qui provoque des rotations du manteau appelées "true polar wander" (TPW). Du côté dunoyau, les simulations numériques sont encore loin du régime de paramètre de la Terre, et il n’estpas certain que le mécanisme d’inversion observé dans ces modèles soit pertinent pour le noyaude la Terre.Ce travail vise à mieux contraindre la façon dont les hétérogénéités de flux de chaleur à laCMB affectent la géodynamo. Dans une première partie, nous explorons l’impact du TPW surle flux de chaleur à la CMB en utilisant deux modèles de convection mantellique récemmentpubliés : un modèle contraint par une reconstruction de plaque et un second produisant de manièreautocohèrente un comportement de tectonique des plaques. Le géoïde est calculé pour corriger leTPW. Une alternative à la correction du TPW est utilisée pour le modèle contraint par la positiondes plaques en repositionnant simplement le manteau dans le référentiel paléomagnétique. Dansce modèle, l’axe de plus grand moment d’inertie n’est pas cohérent avec la position du dipôlemagnétique déduite du paléomagnétisme. Le TPW joue un rôle important dans la redistributiondu flux de chaleur, notamment à des échelles de temps courtes (≤ 10 Myr). Ces variations rapidesmodifient la distribution latitudinale du flux de chaleur à la CMB. Une analyse en composantesprincipales est effectuée pour obtenir les motifs de flux de chaleur dominant dans les modèles.Dans une deuxième partie, nous étudions l’impact des conditions hétérogènes de flux de chaleurau sommet du noyau dans des modèles de géodynamo qui s’étendent vers des régimes deparamètres plus proches de celui de la Terre que ce qui a été fait précédemment. L’effet de ladistribution du flux de chaleur en latitude est notamment étudié. Des motifs de flux complexes extraitsdes modèles de convection mantellique sont également utilisés. Nous montrons qu’un refroidissementéquatorial du noyau est le plus efficace pour déstabiliser le dipôle magnétique, tandisqu’un refroidissement polaire tend à stabiliser le dipôle. Les effets observés des flux de chaleurhétérogènes s’expliquent par la compatibilité entre les motifs de flux et les écoulements zonaux.Notamment, les motifs de flux de chaleur ont un effet plus modéré lorsque les écoulements zoiinaux vers l’ouest sont forts, avec une déstabilisation du dipôle seulement pour des amplitudesimprobables. Un paramètre contrôlant l’amplitude et la stabilité du dipôle magnétique, cohérentavec l’existence d’inversions magnétiques pour la Terre, est proposé.
Origine | Version validée par le jury (STAR) |
---|