Investigation of Al y Ga1− y N/Al0.5Ga0.5N quantum dot properties for the design of ultraviolet emitters - Laboratoire Charles Coulomb (L2C) Accéder directement au contenu
Article Dans Une Revue Japanese Journal of Applied Physics Année : 2016

Investigation of Al y Ga1− y N/Al0.5Ga0.5N quantum dot properties for the design of ultraviolet emitters

Daniel Rosales

Résumé

Self-assembled AlyGa1%yN quantum dots (QDs), with y = 0 and 0.1, have been grown by molecular beam epitaxy on Al0.5Ga0.5N(0001) oriented layers using sapphire substrates. The QD formation has been followed in situ by reflection high energy electron diffraction (RHEED). A two- to three-dimensional (2D–3D) transition of the layer morphology is observed, characterized by a change of the RHEED pattern from streaky lines to Bragg spots. High QD densities, from 1010 up to near 1012 cm%2, have been obtained. By decreasing the GaN QD size and incorporating Al inside the QDs, a strong variation in the photoluminescence (PL) emission has been observed, enabling to cover a large spectral range from near UV (3 eV) to UV-B (3.95 eV). By combining temperature-dependent and time-resolved PL measurements, the internal quantum efficiency of the QDs has been determined at both low and high temperatures as a function of the PL energy.

Mots clés

Fichier non déposé

Dates et versions

hal-01382466 , version 1 (17-10-2016)

Identifiants

Citer

Julien Brault, Samuel Matta, Thi Huong Ngo, Maxim Korytov, Daniel Rosales, et al.. Investigation of Al y Ga1− y N/Al0.5Ga0.5N quantum dot properties for the design of ultraviolet emitters. Japanese Journal of Applied Physics, 2016, 55, pp.05FG06. ⟨10.7567/JJAP.55.05FG06⟩. ⟨hal-01382466⟩
69 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More