Motivic Vitushkin invariants - Laboratoire de mathématiques de l'Université de Savoie Mont Blanc
Article Dans Une Revue Compositio Mathematica Année : 2024

Motivic Vitushkin invariants

Résumé

We prove the nonarchimedean counterpart of a real inequality involving the metric entropy and measure geometric invariants $V_i$, called Vitushkin's variations. Our inequality is based on a new convenient partial preorder on the set of constructible motivic functions, extending the one considered by R. Cluckers and F. Loeser in Constructible motivic functions and motivic integration, Invent. Math., 173 (2008). We introduce, using motivic integration theory and the notion of riso-triviality, nonarchimedean substitutes of the Vitushkin variations $V_i$, and in particular of the number $V_0$ of connected components. We also prove the nonarchimedean global Cauchy-Crofton formula for definable sets of dimension $d$, relating $V_d$ and the motivic measure in dimension $d$.
Fichier principal
Vignette du fichier
2206.15412v2.pdf (787.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-03798621 , version 1 (05-10-2022)
hal-03798621 , version 2 (30-09-2024)

Licence

Identifiants

Citer

Georges Comte, Immanuel Halupczok. Motivic Vitushkin invariants. Compositio Mathematica, In press. ⟨hal-03798621v2⟩
75 Consultations
34 Téléchargements

Altmetric

Partager

More