Rational and lacunary algebraic curves
Résumé
We give a bound on the number $\mathcal{Z}$ of intersection points in a ball of the complex plane, between a rational curve and a lacunary algebraic curve $Q=0$. This bound depends only on the lacunarity diagram of $Q$, and in particular is uniform in the coefficients of $Q$. Our bound shows that $\mathcal{Z}=O(dm)$, where $d$ is the degree of $Q$ and $m$ is the number of its monomials.
Origine | Fichiers produits par l'(les) auteur(s) |
---|