Rational and lacunary algebraic curves - Laboratoire de mathématiques de l'Université de Savoie Mont Blanc
Pré-Publication, Document De Travail Année : 2024

Rational and lacunary algebraic curves

Georges Comte
Sébastien Tavenas

Résumé

We give a bound on the number $\mathcal{Z}$ of intersection points in a ball of the complex plane, between a rational curve and a lacunary algebraic curve $Q=0$. This bound depends only on the lacunarity diagram of $Q$, and in particular is uniform in the coefficients of $Q$. Our bound shows that $\mathcal{Z}=O(dm)$, where $d$ is the degree of $Q$ and $m$ is the number of its monomials.
Fichier principal
Vignette du fichier
2401.05512v1.pdf (438.45 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04714463 , version 1 (30-09-2024)

Identifiants

Citer

Georges Comte, Sébastien Tavenas. Rational and lacunary algebraic curves. 2024. ⟨hal-04714463⟩
74 Consultations
12 Téléchargements

Altmetric

Partager

More