Optimal length estimates for stable CMC surfaces in $3$-space forms
Résumé
In this paper, we study stable constant mean curvature $H$ surfaces in $\mathbb{R}^3$. We prove that, in such a surface, the distance from a point to the boundary is less that $\pi/(2H)$. This upper-bound is optimal and is extended to stable constant mean curvature surfaces in space forms.
Domaines
Géométrie différentielle [math.DG]Origine | Fichiers produits par l'(les) auteur(s) |
---|