Minimal graphs over Riemannian surfaces and harmonic diffeomorphisms - Problèmes liés à la courbure
Article Dans Une Revue American Journal of Mathematics Année : 2019

Minimal graphs over Riemannian surfaces and harmonic diffeomorphisms

Résumé

We construct a parabolic entire minimal graph $S$ over a finite topology complete Riemannian surface $\Sigma$ of curvature $-1$ and infinite area (thus of non-parabolic conformal type). The vertical projection of this graph yields a harmonic diffeomorphism from $S$ onto $\Sigma$. The proof uses the theory of divergence lines to construct minimal graphs. We also generalize a theorem of R. Schoen. Let $g_1$ and $g_2$ be two complete metrics on a orientable surface $S$ with compact boundary and suppose $$\int_{S_r^2}K_{g_2}^-d\sigma_{g_2}\le C\ln(2+r)$$ for some $C>0$ and all $r>0$. If there is a harmonic diffeomorphism from $(S,g_1)$ to $(S,g_2)$, then $(S,g_1)$ is parabolic.
Fichier principal
Vignette du fichier
diffharmo.pdf (455.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01346758 , version 1 (16-01-2023)

Identifiants

Citer

Laurent Mazet, M. Magdalena Rodriguez, Harold Rosenberg. Minimal graphs over Riemannian surfaces and harmonic diffeomorphisms. American Journal of Mathematics, 2019, 141 (5), pp.1149--1177. ⟨10.1353/ajm.2019.0029⟩. ⟨hal-01346758⟩
59 Consultations
45 Téléchargements

Altmetric

Partager

More