Stratified spaces and synthetic Ricci curvature bounds - Problèmes liés à la courbure
Article Dans Une Revue Annales de l'Institut Fourier Année : 2021

Stratified spaces and synthetic Ricci curvature bounds

Résumé

We prove that a compact stratied space satises the Riemannian curvature-dimension condition RCD(K, N) if and only if its Ricci tensor is bounded below by K ∈ R on the regular set, the cone angle along the stratum of codimension two is smaller than or equal to 2π and its dimension is at most equal to N. This gives a new wide class of geometric examples of metric measure spaces satisfying the RCD(K, N) curvature-dimension condition, including for instance spherical suspensions, orbifolds, Kähler-Einstein manifolds with a divisor, Einstein manifolds with conical singularities along a curve. We also obtain new analytic and geometric results on stratied spaces, such as Bishop-Gromov volume inequality, Laplacian comparison, Lévy-Gromov isoperimetric inequality. Our result also implies a similar characterization of compact stratified spaces carrying a lower curvature bound in the sense of Alexandrov.
Fichier principal
Vignette du fichier
StratiRCD.pdf (485 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01773881 , version 2 (23-04-2018)
hal-01773881 , version 3 (05-06-2018)
hal-01773881 , version 1 (30-12-2018)

Identifiants

Citer

Jérôme Bertrand, Christian Ketterer, Ilaria Mondello, Thomas Richard. Stratified spaces and synthetic Ricci curvature bounds. Annales de l'Institut Fourier, 2021, 71 (1), pp.123-173. ⟨10.5802/aif.3393⟩. ⟨hal-01773881v3⟩
203 Consultations
616 Téléchargements

Altmetric

Partager

More