Linear dynamics of multiplication and composition operators on Hol(D) - Laboratoire d'Analyse et de Mathématiques Appliquées
Article Dans Une Revue Complex Analysis and Operator Theory Année : 2024

Linear dynamics of multiplication and composition operators on Hol(D)

Résumé

We give a complete description of the linear dynamics of multiplication Mm and composition operators Cφ on the space Hol(D) of all holomorphic maps on the unit disc. We show that Mm is never supercyclic, and cyclic if and only if the map m is injective. For composition operators, we prove that if φ has a fixed point in D, then Cφ is either not cyclic, or cyclic but not supercyclic on Hol(D). On the other hand, if φ does not have any fixed point in the unit disc, then Cφ is hypercyclic on Hol(D). We provide explicit expressions of cyclic and hypercyclic vectors. Finally, we make some observations on weighted composition operators on Hol(D).
Fichier principal
Vignette du fichier
Cyclicité-Oger-v2.pdf (496.6 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04617436 , version 1 (19-06-2024)
hal-04617436 , version 2 (10-10-2024)

Identifiants

Citer

Lucas Oger. Linear dynamics of multiplication and composition operators on Hol(D). Complex Analysis and Operator Theory, 2024, 18 (169), ⟨10.1007/s11785-024-01615-0⟩. ⟨hal-04617436v2⟩
61 Consultations
51 Téléchargements

Altmetric

Partager

More