Artificial Intelligence for Active Vibration Control Optimization on Smart Structures - Laboratoire de Mécanique des Contacts et des Structures
Communication Dans Un Congrès Année : 2023

Artificial Intelligence for Active Vibration Control Optimization on Smart Structures

Résumé

Abstract New meta-materials are developed with the usage of piezoelectric transducers’ networks. Within the number of controlling strategies for vibration mitigation, this study uses the classical derivative control law as a basis. As a preliminary study in optimization with AI, an automatic algorithm using Reinforcement Learning (RL) approached with Trust Region Policy Optimization (TRPO) tunes a controller on an experimental cantilever beam. The control law is a simple derivative feedback between two collocated piezoelectric transducers close to the beam-clamped end. The RL algorithm runs offline on an estimated model of the experimental setup. The study compares control tuning methods between Reinforcement Learning results and a classical published approach.
Fichier principal
Vignette du fichier
SMASIS_2023_Febvre_HAL.pdf (2.99 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04770224 , version 1 (27-11-2024)

Identifiants

Citer

Maryne Febvre, Jonathan Rodriguez, Simon Chesne, Manuel Collet. Artificial Intelligence for Active Vibration Control Optimization on Smart Structures. ASME 2023 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Sep 2023, Austin, France. ⟨10.1115/SMASIS2023-110216⟩. ⟨hal-04770224⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More