Differential Games for a Mixed ODE-PDE System - Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352
Pré-Publication, Document De Travail Année : 2024

Differential Games for a Mixed ODE-PDE System

Résumé

Motivated by a vaccination coverage problem, we consider here a zero-sum differential game governed by a differential system consisting of a hyperbolic partial differential equation (PDE) and an ordinary differential equation (ODE). Two players act through their respective controls to influence the evolution of the system with the aim of minimizing their objective functionals F_1 and F_2 , under the assumption that F_1 + F_2 = 0. First we prove a well posedness and a stability result for the differential system, once the control functions are fixed. Then we introduce the concept of non-anticipating strategies for both players and we consider the associated value functions, which solve two infinite-dimensional Hamilton-Jacobi-Isaacs equations in the viscosity sense.
Fichier principal
Vignette du fichier
VaxL2.pdf (523.53 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04844842 , version 1 (18-12-2024)

Identifiants

Citer

Abraham Sylla, Mauro Garavello, Elena Rossi. Differential Games for a Mixed ODE-PDE System. 2024. ⟨hal-04844842⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More