DG-SEPARABLE DG-EXTENSIONS
Dg-separable dg-extensions
Résumé
We define and characterise completely dg-separable dg-extensions $\varphi:(A,d_A)\rightarrow (B,d_B)$. We completely characterise the case of graded commutative dg-division algebras in characteristic different from $2$. We prove that for a dg-separable extension a short exact sequence of dg-modules over $(B,d_B)$ splits if and only if the restriction to $(A,d_A)$ splits, giving that $(B,d_B)$ is acyclic and $\ker(d_B)$ graded-semisimple in case $(A,d_A)$ is a graded commutative dg-division algebra with $d_A=0$.
Origine | Fichiers produits par l'(les) auteur(s) |
---|---|
licence |