Thèse Année : 2023

MBTA pipeline analysis optimization and frequency response calibration method development for the gravitational wave detector Virgo

Optimisation de la chaîne d'analyse MBTA et développement d'une méthode d'étalonnage de la réponse fréquentielle du détecteur d'onde gravitationnelle Virgo

Nicolas Andres
  • Fonction : Auteur
  • PersonId : 1374708
  • IdRef : 277041260

Résumé

The LIGO Virgo collaboration marked the beginnings of gravitational astronomy by providing direct evidence of their existence in September 2015. The detection of gravitationnal wave coming from a binary black holes merger led to the physic's Nobel price. This field has since experienced a great growth, each discovery of which allows an advance in disciplines such as astrophysics, cosmology and fundamental physics. At the end of each observation period, the detectors are stopped and many aspects are improved. This work is part of the preparation phase between period O3 and O4 beginning in May 2024 to configure interferometers in their advanced states in order to optimize their sensitivities. Calibration then becomes crucial in order to accurately reconstruct the signal containing gravitational wave information, allowing detection and the production of scientific results such as the measurement of the Hubble constant, etc. An instrumentation work has been carried out, allowing an accurate and regular measurement of the time stamp (timing) of the readout sensing chain of the interferometer signal, which must be mastered better than 0.01 ms for the purpose of a joint analysis of the detectors network data.Many devices for the calibration of the interferometer rely on the reading of control signals by photodetectors whose frequency response has been assumed to be flat. In order to avoid any bias introduced in the reconstruction of the signal, a measurement method must be developed for a frequency calibration of each photo detector involved. Two methods are compared for use in the O5 period.In addition, the increasing sensitivity of the detectors means more detections. Collaboration analysis chains need to follow instrumental improvements by developing new tools to optimize real-time and off-ligne signal search. The MBTA Low Latency Analysis Chain is one of 4 collaboration analysis pipelines focusing on the search for compact binary coalescences by combining independent data analysis from all 3 detectors. It has many powerful noise rejection tools, but does not take into account any astrophysical information a priori. Through the accumulation of data in previous observation periods, the collaboration was able to establish more accurate mass distribution models for compact binary coalescence populations. During my thesis, a new tool was developed by the MBTA team using this new information, aimed at estimating the probability of origin of events (astrophysics or not) and at classifying the nature of the astrophysical source. This tool finally made it possible to restructure the global analysis chain by using it as the main parameter for classifying events according to their level of significance. The collaboration produces low-latency public alerts for multi-messenger astronomy, providing information related to detected signals common to the different analytical pipelines. Not knowing in advance the preferences of the different experiences partners of the LIGO Virgo collaboration to define the optimal parameters allowing multi-messenger detections, it was decided to test another method to implement similar astrophysical information in the MBTA analysis chain. A technique for including astrophysical information directly in the parameter defining the ranking by significance level of candidate events is presented. This method makes it possible to improve research by providing better discrimination between astrophysical and background noise events. By considering the observation period O3 this method makes it possible to increase the number of detection by 10% with MBTA , detections that have been confirmed by the other chains of analysis.
La collaboration LIGO Virgo a marqué les débuts de l'astronomie gravitationnelle en apportant une preuve directe de leur existence en Septembre 2015. Ce domaine connaît depuis un bel essor dont chaque découverte permet une avancée dans les disciplines telles que l'astrophysique, la cosmologie et la physique fondamentale. À l'issue de chaque période d'observation, les détecteurs sont arrêtés et de nombreux aspects sont améliorés. Ce travail s'inscrit durant la phase de préparation entre la période O3 et O4 débutant en mai 2024 visant à configurer les interféromètres dans leurs états avancés en optimisant leurs sensibilités. L'étalonnage devient alors crucial afin de reconstruire avec précision le signal contenant l'information sur les ondes gravitationnelles, permettant les détections et la production de résultats scientifiques comme la mesure de la constante de Hubble, etc. Un travail d'instrumentation a été mené, permettant une mesure précise et régulière de l'horodatage du signal de l'interféromètre, qui doit être maitrisé à mieux que 0.01 ms près dans le but d'une analyse conjointe des données du réseau de détecteurs.De nombreux dispositifs permettant l'étalonnage de l'interféromètre reposent sur la lecture de signaux de contrôles par des photo-détecteurs dont la réponse fréquentielle a été supposée constante. Afin d'éviter tout biais introduit dans la reconstruction du signal, une méthode de mesure se doit d'être développée en vue d'une calibration en fréquence de chaque photo-détecteur impliqué. Deux méthodes sont ici comparées en vue d'une utilisation pour la période O5.Par ailleurs, la sensibilité accrue des détecteurs est synonyme de détections plus nombreuses. Les chaînes d'analyse de la collaboration se doivent de suivre les améliorations instrumentales en développant de nouveaux outils afin d'optimiser la recherche de signal en temps réel. La chaîne d'analyse à faible latence MBTA est un des 4 pipelines d'analyse de la collaboration se concentrant sur la recherche de coalescences de binaires compactes en combinant une analyse indépendante des données des 3 détecteurs. Elle dispose de nombreux outils de réjection de bruit performants, mais ne prend en compte aucune information astrophysique à priori. Grâce à l'accumulation de données dans les périodes d'observation précédentes, la collaboration a pu établir des modèles de distribution de masses plus précis pour les populations de coalescences de binaires compactes. Durant ma thèse un nouvel outil a été développé par l'équipe MBTA en utilisant ces nouvelles informations, visant à estimer la probabilité d'origine des événements (astrophysique ou non) ainsi qu'à en classifier la nature de la source astrophysique. Cet outil a finalement permis de restructurer la chaîne d'analyse globale en l'utilisant comme paramètre principal pour classer les événements selon leur niveau de significativité. La collaboration produit des alertes publiques à faible latences pour l'astronomie multi-messager, dans lesquelles sont fournies des informations liées aux signaux détectés communes aux différents pipelines d'analyses. Ne sachant pas à l'avance les préférences des différentes expériences partenaires de la collaboration LIGO Virgo pour définir les paramètres optimaux permettant un suivi multi-messagers, il a été décidé de tester une autre méthode permettant l'implémentation d'information astrophysique similaires dans la chaîne d'analyse MBTA. Une technique permettant d'inclure l'information astrophysique directement dans le paramètre définissant le classement par niveau de significativité des événements candidats est présentée. Cette méthode permet d'améliorer la recherche en fournissant une meilleure discrimination entre les événements astrophysiques et ceux provenant du bruit d'arrière-plan. En considérant la période d'observation O3 cette méthode permet d'augmenter le nombre de détection de 10% avec MBTA , détections qui ont été confirmés par les autres chaînes d'analyses.
Fichier principal
Vignette du fichier
ANDRES_2023_archivage.pdf (8.75 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-04544593 , version 1 (12-04-2024)

Identifiants

  • HAL Id : tel-04544593 , version 1

Citer

Nicolas Andres. Optimisation de la chaîne d'analyse MBTA et développement d'une méthode d'étalonnage de la réponse fréquentielle du détecteur d'onde gravitationnelle Virgo. Astrophysique [astro-ph]. Université Savoie Mont Blanc, 2023. Français. ⟨NNT : 2023CHAMA029⟩. ⟨tel-04544593⟩
93 Consultations
95 Téléchargements

Partager

More