Loading...
Presentation
The LCAR (Laboratoire Collisions-Agrégats-Réactivité) is a laboratory centered in fundamental physics organized around two main fields
- The study of laser-matter interaction focuses on matter waves studies and strong-field physics
- The study of molecular structures and dynamics develops the study and measurement of the properties of clusters, molecules of biological and astrophysical interest.
The LCAR is member of FeRMI (Fédération de recherche Matière et Interactions).
Open access
63 %
New submit
- Not still registered?Join
- Submit a thesis : TEL (thèses en ligne)
- Contact : documentation@irsamc.ups-tlse.fr
Research teams
-----------------------------------------------------
Old team
Publisher copyright policies & self-archiving
Last submission
The propagation of matter waves in curved geometry is relevant for ion transport, atomtronics and electrons in nanowires. Curvature effects are usually addressed within the adiabatic limit and treated via an effective potential acting on the manifold to which the particles are strongly confined. However, the strength of the confinements that can be achieved experimentally are limited in practice, and the adiabatic approximation often appears too restrictive for realistic guides. Here, we work out a design method for 2D sharply bent waveguides beyond this approximation using an exact inverse-engineering technique. The efficiency of the method is confirmed by the resolution of the 2D nonlinear Schrödinger equation in curved geometry. In this way, we realize reflectionless and ultrarobust curved guides, even in the presence of interactions. Here, the transverse stability is improved by several orders of magnitude when compared to circular guides of similar size.
We study optical field emission from silver nanotips, showing the combined influence of the illumination wavelength and the exact shape of the nanotip on the strong-field response. This is particularly relevant in the case of FIB milled nano tips, where the nanotip fabrication capabilities could become a new ingredient for the study of strong-field physics. The influence of the thermal load on the nanotip and its effect on the emission is studied as well by switching the repetition rate of the laser source from 1 kHz to 62 MHz, showing a clear transition towards the quenching of the strongfield emission.
Optimal control theory is implemented with fully converged hierarchical equations of motion (HEOM) describing the time evolution of an open system density matrix strongly coupled to the bath in a spin-boson model. The populations of the two-level sub-system are taken as control objectives; namely, their revivals or exchange when switching off the field. We, in parallel, analyze how the optimal electric field consequently modifies the information back flow from the environment through different non-Markovian witnesses. Although the control field has a dipole interaction with the central sub-system only, its indirect influence on the bath collective mode dynamics is probed through HEOM auxiliary matrices, revealing a strong correlation between control and dissipation during a non-Markovian process. A heterojunction is taken as an illustrative example for modeling in a realistic way the two-level sub-system parameters and its spectral density function leading to a non-perturbative strong coupling regime with the bath. Although, due to strong system-bath couplings, control performances remain rather modest, the most important result is a noticeable increase of the non-Markovian bath response induced by the optimally driven processes.