Features of the contact angle hysteresis at the nanoscale: A molecular dynamics insight - LEMTA - Laboratoire d'Energétique et de Mécanique Théorique et Appliquée
Article Dans Une Revue Physics of Fluids Année : 2024

Features of the contact angle hysteresis at the nanoscale: A molecular dynamics insight

Sergii Burian
Yaroslav Grosu
Liudmyla Klochko

Résumé

Understanding the physics of a three-phase contact line between gas, liquid, and solid is important for numerous applications. At the macroscale, the response of a three-phase contact line to an external force action is often characterized by a contact angle hysteresis, and several models are presented in the literature for its description. Yet, there is still a need for more information about such model applications at the nanoscale. In this study, a molecular dynamics approach was used to investigate the shape of a liquid droplet under an external force for different wetting regimes. In addition, an analytic model for describing the droplet shape was developed. It gives us the possibility to evaluate the receding and advancing wetting angle accurately. With our modeling, we found that the interplay between capillary forces and viscous forces is crucial to characterize the droplet shape at the nanoscale. In this frame, the importance of the rolling movement of the interface between liquid and vapor was pointed out. We also demonstrate that in the range of the external forces when capillary forces are most significant compared to others, hysteresis is well described by the macroscale Cox–Voinov model.
Fichier principal
Vignette du fichier
hysteresis_paper_Physics_of_Fluids.pdf (2.1 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04790991 , version 1 (19-11-2024)

Identifiants

Citer

Viktor Mandrolko, Guillaume Castanet, Sergii Burian, Yaroslav Grosu, Liudmyla Klochko, et al.. Features of the contact angle hysteresis at the nanoscale: A molecular dynamics insight. Physics of Fluids, 2024, 36 (5), ⟨10.1063/5.0206801⟩. ⟨hal-04790991⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More