Caractérisation de la banquise Arctique à partir d'observations micro-ondes multi-satellites - Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique Accéder directement au contenu
Thèse Année : 2022

Arctic sea ice and its snow cover characterization from multi-satellite microwave observations

Caractérisation de la banquise Arctique à partir d'observations micro-ondes multi-satellites

Résumé

Sea ice plays a major role in ocean circulation as well as in the climate and weather system. In the context of global warming, the extent of the Arctic sea ice has been decreasing steadily over the last 40 years and monitoring of the Arctic is essential. Microwave instruments on board satellites allow the study of this region of the Earth under all weather conditions, and regardless of the day/night cycle. Particularly suited over polar regions with high cloud cover and a six-month polar night, microwave satellite provide key observations for estimating geophysical parameters of the sea ice. Nevertheless, the understanding of the physics underlying the observed microwave signatures is still partial. This thesis aims at improving our understanding of the microwave signals of the sea ice and is part of the preparation of two upcoming Earth observation missions led by the European Space Agency: the Copernicus Imager Microwave Radiometer (CIMR) and the Copernicus Polar Ice and Snow Topography ALtimeter (CRISTAL). In a first part, the covariabilities of passive microwave signals, highlighted by an unsupervised classification technique, will be analyzed and interpreted jointly with active microwave signals, using a microwave radiative transfer model. The results showed that it is possible to identify specific behaviors of sea ice concentration and thickness, and snow structure. The importance of metamorphism within the snowpack for the interpretation of passive microwave signals was highlighted. In a second part, an algorithm for estimating sea ice thickness from passive microwave observations was developed using an artificial intelligence technique. The results were compared to in situ sea ice thickness measurements and also showed good performance compared to other satellite-based sea ice thickness products. By applying the algorithm to a long collection of intercalibrated satellite data, a time series of Arctic sea ice thickness was constructed between 1992 and 2020, making it the longest to date. A final section deals with microwave altimetry techniques for measuring geophysical parameters of the sea ice. The sensitivity of microwave altimetry waveforms to the thickness of the snow cover of the Arctic sea ice is analyzed.
La banquise joue un rôle majeur dans la circulation océanique ainsi que dans le système climatique et météorologique. Dans un contexte de réchauffement climatique, où l’étendue de la banquise arctique ne cesse de décroître depuis les 40 dernières années, le suivi et la surveillance de l’Arctique est essentiel. Les instruments micro-ondes à bord de satellites permettent l’étude de cette région terrestre par tous les temps, indépendamment du cycle jour/nuit. Particulièrement adaptées à l’observation des régions polaires où la présence de nuages est importante et où la nuit polaire dure six mois, les observations satellites micro-ondes sont la pierre angulaire des estimations des paramètres géophysiques de la banquise. Néanmoins, la compréhension de la physique sous-jacente aux signatures micro-ondes observées est encore partielle. Cette thèse a pour but d’améliorer notre compréhension des signaux micro-ondes de la banquise et se place dans le cadre de la préparation de deux prochaines missions d’observation de la Terre menée par l’Agence Saptiale Européenne : le Copernicus Imager Microwave Radiometer (CIMR) et le Copernicus polaR Ice and Snow Topography ALtimeter (CRISTAL). Dans une première partie, les covariabilités des signaux micro-ondes passifs, mis en avant par une technique de classification non supervisée, seront analysées et interprétées conjointement avec des signaux micro-ondes actifs à l’aide d’un modèle de transfert radiatif micro-onde spécifique à la banquise. Les résultats ont montré qu’il est possible d’identifier les comportements spécifiques de la concentration et de l’épaisseur de la glace de mer, et de la structure de la neige. L’importance du métamorphisme au sein du manteau neigeux pour l’interprétation des signaux micro-ondes passifs a été mis en évidence. Dans une deuxième partie, un algorithme d’estimation de l’épaisseur de la glace de mer à partir d’observations micro-ondes passives a été développé en utilisant une technique d’intelligence artificielle. Les résultats ont été comparés à des mesures in situ d’épaisseur de glace de mer et ont aussi montré de bonnes performances en comparaison à d’autres produits satellitaires d’épaisseur de glace de mer. En appliquant l’algorithme à une longue collection de données satellitaires intercalibrées, une série temporelle d’épaisseur de glace de mer arctique a été construite entre 1992 et 2020, ce qui en fait la plus longue à ce jour. Une dernière partie traite des techniques altimétriques micro-ondes pour la mesure des paramètres géophysique de la banquise. Une analyse de la sensibilité des formes d’ondes altimétriques micro-ondes à l’épaisseur du manteau neigeux de la banquise arctique est menée.
Fichier principal
Vignette du fichier
SORIOT_Clement_these_2022.pdf (71.66 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04011507 , version 1 (02-03-2023)

Identifiants

  • HAL Id : tel-04011507 , version 1

Citer

Clément Soriot. Caractérisation de la banquise Arctique à partir d'observations micro-ondes multi-satellites. Océan, Atmosphère. Sorbonne Université, 2022. Français. ⟨NNT : 2022SORUS451⟩. ⟨tel-04011507⟩
70 Consultations
2 Téléchargements

Partager

Gmail Facebook X LinkedIn More