Towards LLM-Powered Ambient Sensor Based Multi-Person Human Activity Recognition - Multimodal Perception and Sociable Interaction
Communication Dans Un Congrès Année : 2024

Towards LLM-Powered Ambient Sensor Based Multi-Person Human Activity Recognition

Julien Cumin
  • Fonction : Auteur
  • PersonId : 977626
Fano Ramparany
  • Fonction : Auteur
  • PersonId : 1011536
  • IdRef : 139639055

Résumé

Human Activity Recognition (HAR) is one of the central problems in fields such as healthcare, elderly care, and security at home. However, traditional HAR approaches face challenges including data scarcity, difficulties in model generalization, and the complexity of recognizing activities in multi-person scenarios. This paper proposes a system framework called LAHAR, based on large language models. Utilizing prompt engineering techniques, LAHAR addresses HAR in multi-person scenarios by enabling subject separation and action-level descriptions of events occurring in the environment. We validated our approach on the ARAS dataset, and the results demonstrate that LAHAR achieves comparable accuracy to the state-of-the-art method at higher resolutions and maintains robustness in multi-person scenarios.
Fichier principal
Vignette du fichier
main.pdf (1.65 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04619086 , version 1 (24-06-2024)
hal-04619086 , version 2 (20-09-2024)

Identifiants

Citer

Xi Chen, Julien Cumin, Fano Ramparany, Dominique Vaufreydaz. Towards LLM-Powered Ambient Sensor Based Multi-Person Human Activity Recognition. The 30th International Conference on Parallel and Distributed Systems, Oct 2024, Belgrade, Serbia. ⟨hal-04619086v2⟩
144 Consultations
198 Téléchargements

Altmetric

Partager

More