Optimizing a Generalized Gini Index in Stable Marriage Problems: NP-Hardness, Approximation and a Polynomial Time Special Case - Laboratoire d'Informatique de Paris 6
Article Dans Une Revue Algorithmica Année : 2019

Optimizing a Generalized Gini Index in Stable Marriage Problems: NP-Hardness, Approximation and a Polynomial Time Special Case

Hugo Gilbert
Olivier Spanjaard

Résumé

This paper deals with fairness in stable marriage problems. The idea studied here is to achieve fairness thanks to a Generalized Gini Index (GGI), a well-known criterion in inequality measurement, that includes both the egalitarian and utilitarian criteria as special cases. We show that determining a stable marriage optimizing a GGI criterion of agents’ disutilities is an NP-hard problem. We then provide a polynomial time 2-approximation algorithm in the general case, as well as an exact algorithm which is polynomial time in the case of a constant number of non-zero weights parametrizing the GGI criterion.
Fichier principal
Vignette du fichier
1809.08453v1.pdf (312.7 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-02060866 , version 1 (10-09-2024)

Identifiants

Citer

Hugo Gilbert, Olivier Spanjaard. Optimizing a Generalized Gini Index in Stable Marriage Problems: NP-Hardness, Approximation and a Polynomial Time Special Case. Algorithmica, 2019, ⟨10.1007/s00453-019-00550-3⟩. ⟨hal-02060866⟩
106 Consultations
22 Téléchargements

Altmetric

Partager

More