Arbitrary order monotonic finite-volume schemes for 2D elliptic problems - Laboratoire Jacques-Louis Lions
Pré-Publication, Document De Travail Année : 2023

Arbitrary order monotonic finite-volume schemes for 2D elliptic problems

Résumé

Monotonicity is very important in most applications solving elliptic problems. Many schemes preserving positivity has been proposed but are at most second-order convergent. Besides, in general, high-order schemes do not preserve positivity. In the present paper, we propose an arbitrary-order monotonic method for elliptic problems in 2D. We show how to adapt our method to the case of a discontinuous and/or tensorvalued diffusion coefficient, while keeping the order of convergence. We assess the new scheme on several test problems.
Fichier principal
Vignette du fichier
article_2D_High_Order.pdf (992.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

cea-04211874 , version 1 (20-09-2023)
cea-04211874 , version 2 (06-08-2024)

Identifiants

  • HAL Id : cea-04211874 , version 1

Citer

Xavier Blanc, Francois Hermeline, Emmanuel Labourasse, Julie Patela. Arbitrary order monotonic finite-volume schemes for 2D elliptic problems. 2023. ⟨cea-04211874v1⟩
221 Consultations
92 Téléchargements

Partager

More