Convergence in nonlinear optimal sampled-data control problems - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year :

Convergence in nonlinear optimal sampled-data control problems

Loïc Bourdin
  • Function : Author
  • PersonId : 1125560

Abstract

Consider, on the one part, a general nonlinear finite-dimensional optimal control problem and assume that it has a unique solution whose state is denoted by x*. On the other part, consider the sampled-data control version of it. Under appropriate assumptions, we prove that the optimal state of the sampled-data problem converges uniformly to x* as the norm of the corresponding partition tends to zero. Moreover, applying the Pontryagin maximum principle to both problems, we prove that, if x* has a unique weak extremal lift with a costate p that is normal, then the costate of the sampled-data problem converges uniformly to p. In other words, under a nondegeneracy assumption, control sampling commutes, at the limit of small partitions, with the application of the Pontryagin maximum principle.
Fichier principal
Vignette du fichier
sampling.pdf (274.33 Ko) Télécharger le fichier
bibIEEEbourdintrelat.bib (17.65 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03975698 , version 1 (06-02-2023)

Identifiers

Cite

Loïc Bourdin, Emmanuel Trélat. Convergence in nonlinear optimal sampled-data control problems. 2023. ⟨hal-03975698⟩
2 View
1 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More