Propagation of chaos and hydrodynamic description for topological models - Laboratoire Jacques-Louis Lions Access content directly
Preprints, Working Papers, ... Year :

Propagation of chaos and hydrodynamic description for topological models

Abstract

In this work we extend the analysis carried out in D. Benedetto, E. Caglioti, S. Rossi Mean-field limit for particle systems with topologicalinteractions Math. Mech. Complex Syst. 9 (2021) 423-440, proving propagation of chaos, i.e. convergence of the marginals, for the deterministic Cucker-Smale model with topological interaction. By looking at the monokinetic solutions, we also obtain a rigorous derivation of the hydrodynamic description given by the corresponding Euler system.
Fichier principal
Vignette du fichier
Topological_Liouville_ver10.pdf (289.84 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-04102006 , version 1 (22-05-2023)
hal-04102006 , version 2 (01-08-2023)

Identifiers

  • HAL Id : hal-04102006 , version 1

Cite

Dario Benedetto, Thierry Paul, Stefano Rossi. Propagation of chaos and hydrodynamic description for topological models. 2023. ⟨hal-04102006v1⟩
34 View
20 Download

Share

Gmail Facebook Twitter LinkedIn More