Lie algebra for rotational subsystems of a driven asymmetric top - Laboratoire Jacques-Louis Lions
Preprints, Working Papers, ... Year : 2022

Lie algebra for rotational subsystems of a driven asymmetric top

Abstract

We present an analytical approach to construct the Lie algebra of finite-dimensional subsystems of the driven asymmetric top rotor. Each rotational level is degenerate due to the isotropy of space, and the degeneracy increases with rotational excitation. For a given rotational excitation, we determine the nested commutators between drift and drive Hamiltonians using a graph representation. We then generate the Lie algebra for subsystems with arbitrary rotational excitation using an inductive argument.
Fichier principal
Vignette du fichier
lie-algebra-asymm-top.pdf (395.39 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04668472 , version 1 (06-08-2024)

Licence

Identifiers

Cite

Eugenio Pozzoli, Monika Leibscher, Mario Sigalotti, Ugo Boscain, Christiane P. Koch. Lie algebra for rotational subsystems of a driven asymmetric top. 2024. ⟨hal-04668472⟩
100 View
20 Download

Altmetric

Share

More