Fundamental solutions to Kolmogorov-Fokker-Planck equations with rough coefficients: existence, uniqueness, upper estimates - Laboratoire de Mathématiques d'Orsay
Pré-Publication, Document De Travail Année : 2024

Fundamental solutions to Kolmogorov-Fokker-Planck equations with rough coefficients: existence, uniqueness, upper estimates

Pascal Auscher
Lukas Niebel
  • Fonction : Auteur
  • PersonId : 1367348

Résumé

We show the existence and uniqueness of fundamental solution operators to Kolmo\-gorov-Fokker-Planck equations with rough (measurable) coefficients and local or integral diffusion on finite and infinite time strips. In the local case, that is to say when the diffusion operator is of differential type, we prove $\L^2$ decay using Davies' method and the conservation property. We also prove that the existence of a generalized fundamental solution with the expected pointwise Gaussian upper bound is equivalent to Moser's $\L^2-\L^\infty$ estimates for local weak solutions to the equation and its adjoint. When coefficients are real, this gives the existence and uniqueness of such a generalized fundamental solution and a new and natural way to obtain pointwise decay.
Fichier principal
Vignette du fichier
kinetic_fundamental_revised.pdf (375.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04519657 , version 1 (25-03-2024)
hal-04519657 , version 2 (27-03-2024)
hal-04519657 , version 3 (30-11-2024)

Licence

Identifiants

Citer

Pascal Auscher, Cyril Imbert, Lukas Niebel. Fundamental solutions to Kolmogorov-Fokker-Planck equations with rough coefficients: existence, uniqueness, upper estimates. 2024. ⟨hal-04519657v3⟩
69 Consultations
50 Téléchargements

Altmetric

Partager

More