Critical points of the one dimensional Ambrosio-Tortorelli functional with an obstacle condition - Laboratoire de Mathématiques d'Orsay
Pré-Publication, Document De Travail Année : 2024

Critical points of the one dimensional Ambrosio-Tortorelli functional with an obstacle condition

Martin Rakovsky
  • Fonction : Auteur
  • PersonId : 1436150

Résumé

We consider a family of critical points of the Ambrosio-Tortorelli energy with an obstacle condition on the phase field variable. This problem can be interpreted as a time discretization of a quasistatic evolution problem where the obstacle at step n is defined as the solution at step n -1. The obstacle condition now reads as an irreversibility condition (the crack can only increase in time). The questions tackled here are the regularity of the critical points, the properties inherited from the obstacle sequence, the position of the limit points and the equipartition of the phase field energy. The limits of such critical points turn out to be critical points of the Mumford-Shah energy that inherit the possible discontinuities induced by the obstacle sequence.

Fichier principal
Vignette du fichier
Critical_points_of_the_one_dimensional_Ambrosio-Tortorelli_functional_with_an_obstacle_condition.pdf (280.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04766315 , version 1 (04-11-2024)

Identifiants

  • HAL Id : hal-04766315 , version 1

Citer

Martin Rakovsky. Critical points of the one dimensional Ambrosio-Tortorelli functional with an obstacle condition. 2024. ⟨hal-04766315⟩
10 Consultations
5 Téléchargements

Partager

More