Optimal regularity for quasiminimal sets of codimension one in $\mathbb{R}^2$ and $\mathbb{R}^3$ - Laboratoire de Mathématiques d'Orsay
Pré-Publication, Document De Travail Année : 2024

Optimal regularity for quasiminimal sets of codimension one in $\mathbb{R}^2$ and $\mathbb{R}^3$

Résumé

Quasiminimal sets are sets for which a pertubation can decrease the area but only in a controlled manner. We prove that in dimensions $2$ and $3$, such sets separate a locally finite family of local John domains. Reciprocally, we show that this property is sufficient for quasiminimality in every dimension. In addition, we show that quasiminimal sets locally separate the space in two components, except at isolated points in $\mathbf{R}^2$ or out a of subset of dimension strictly less than $N-1$ in $\mathbf{R}^N$.
Fichier principal
Vignette du fichier
quasiminimal_sets.pdf (566.45 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04777723 , version 1 (12-11-2024)

Identifiants

  • HAL Id : hal-04777723 , version 1

Citer

Camille Labourie, Yana Teplitskaya. Optimal regularity for quasiminimal sets of codimension one in $\mathbb{R}^2$ and $\mathbb{R}^3$. 2024. ⟨hal-04777723⟩
39 Consultations
8 Téléchargements

Partager

More