Solving non-causal schemes for anisotropic eikonal equations, with quasi-linear complexity - Laboratoire de Mathématiques d'Orsay
Pré-Publication, Document De Travail Année : 2024

Solving non-causal schemes for anisotropic eikonal equations, with quasi-linear complexity

Résumé

We introduce a numerical algorithm for solving anisotropic eikonal equations, whose complexity is quasi-linear O(N ln^2(N/ε)) with respect to the number N of discretization points, and logarithmic w.r.t. the numerical tolerance ε>0, with explicit constants depending on the metric defining the PDE geometry. In contrast with the fast-marching method, our algorithm does not rely on the causality property, and for this reason it can be applied to a variety of discretization schemes: semi-Lagrangian, Eulerian, or based on a Lax-Friedrichs relaxation of the eikonal PDE. Our method uses a narrow band to compute the eikonal front propagation, whose width is tuned depending on the properties of the discretization scheme and of the metric. Numerical experiments, involving anisotropic metrics arising in seismology, image segmentation and motion planning, illustrate the efficiency of the method.
Fichier principal
Vignette du fichier
Eikonal complexity.pdf (1.4 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04798205 , version 1 (22-11-2024)

Identifiants

  • HAL Id : hal-04798205 , version 1

Citer

Jean-Marie Mirebeau, Rawane Mansour. Solving non-causal schemes for anisotropic eikonal equations, with quasi-linear complexity. 2024. ⟨hal-04798205⟩
0 Consultations
0 Téléchargements

Partager

More