Bifurcating solitonic vortices in a strip - Laboratoire de Mathématiques d'Orsay
Pré-Publication, Document De Travail Année : 2024

Bifurcating solitonic vortices in a strip

Résumé

The specific geometry of a strip provides connections between solitons and solitonic vortices, which are vortices with a solitonic behaviour in the infinite direction of the strip. We show that there exist stationary solutions to the Gross-Pitaevskii equation with k vortices on a transverse line, which bifurcate from the soliton solution as the width of the strip is increased. After decomposing into Fourier series with respect to the transverse variable, the construction of these solitonic vortices is achieved by relying on a careful analysis of the linearized operator around the soliton solution: we apply a fixed point argument to solve the equation in the directions orthogonal to the kernel of the linearized operator, and then handle the direction corresponding to the kernel by an inverse function theorem.
Fichier principal
Vignette du fichier
AGS-Solitons.pdf (473.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04801178 , version 1 (25-11-2024)

Identifiants

  • HAL Id : hal-04801178 , version 1

Citer

Amandine Aftalion, Philippe Gravejat, Etienne Sandier. Bifurcating solitonic vortices in a strip. 2024. ⟨hal-04801178⟩
0 Consultations
0 Téléchargements

Partager

More