Noncontractible Hamiltonian loops in the kernel of Seidel’s representation - Laboratoire de Mathématiques d'Orsay
Article Dans Une Revue Pacific Journal of Mathematics Année : 2017

Noncontractible Hamiltonian loops in the kernel of Seidel’s representation

Résumé

The main purpose of this note is to exhibit a Hamiltonian diffeomorphism loop undetected by the Seidel morphism of a 1-parameter family of 2-point blow-ups of S2×S2, exactly one of which is monotone. As side remarks, we show that Seidel’s morphism is injective on all Hirzebruch surfaces, and discuss how to adapt the monotone example to the Lagrangian setting.

Mots clés

Fichier principal
Vignette du fichier
OnSeidelInjectivity-v3.pdf (339.13 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04840711 , version 1 (16-12-2024)

Identifiants

Citer

Sílvia Anjos, Rémi Leclercq. Noncontractible Hamiltonian loops in the kernel of Seidel’s representation. Pacific Journal of Mathematics, 2017, 290 (2), pp.257-272. ⟨10.2140/pjm.2017.290.257⟩. ⟨hal-04840711⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More