Optimal Inverse Projection of Floating-Point Addition - Laboratoire Méthodes Formelles
Article Dans Une Revue Numerical Algorithms Année : 2020

Optimal Inverse Projection of Floating-Point Addition

Résumé

In a setting where we have intervals for the values of floating-point variables x, a, and b, we are interested in improving these intervals when the floating-point equality $x ⊕ a = $b holds. This problem is common in constraint propagation, and called the inverse projection of the addition. It also appears in abstract interpretation for the analysis of programs containing IEEE 754 operations. We propose floating-point theorems that provide optimal bounds for all the intervals. Fast loop-free algorithms compute these optimal bounds using only floating-point computations at the target precision.
Fichier principal
Vignette du fichier
main.pdf (415.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01939097 , version 1 (29-11-2018)

Identifiants

Citer

Diane Gallois-Wong, Sylvie Boldo, Pascal Cuoq. Optimal Inverse Projection of Floating-Point Addition. Numerical Algorithms, In press, 83 (3), pp.957--986. ⟨10.1007/s11075-019-00711-z⟩. ⟨hal-01939097⟩
199 Consultations
359 Téléchargements

Altmetric

Partager

More