Communication Dans Un Congrès Année : 2019

Cumulative Types Systems and Levels

Résumé

Cumulative Typed Systems (CTS), extend Pure Type Systems with a subtyping relation on universes. We introduce LCTS, a CTS enriched with a notion of level. LCTS has subject reduction (reduction preserves types) but lacks a strong reduction property that levels are also preserved. We show that this strong subject reduction property implies two famous conjectures on CTS: Expansion postponement and the equivalence between explicit and implicit conversion. The former is an open conjecture in the general case for PTS/CTS. The latter has been proved by Siles [5] for PTS only and is still a conjecture for CTS. We rephrase this notion of level using a well-founded order on derivation trees. We show that the existence of such well-founded order implies a type system with the strong subject reduction property. Hence, these two conjectures is a direct consequence of the existence of such well-founded order. Yet, it is not known if such well-founded order exists in general.
Fichier principal
Vignette du fichier
LFMTP2019_SP_1.pdf (222.06 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02150179 , version 1 (07-06-2019)

Identifiants

  • HAL Id : hal-02150179 , version 1

Citer

François Thiré. Cumulative Types Systems and Levels. LFMTP 2019 - Logical Frameworks and Meta-Languages: Theory and Practice, Jun 2019, Vancouver, Canada. ⟨hal-02150179⟩
193 Consultations
159 Téléchargements

Partager

More