Pré-Publication, Document De Travail Année : 2019

Guaranteed optimal reachability control of reaction-diffusion equations using one-sided Lipschitz constants and model reduction

Résumé

We show that, for any spatially discretized system of reaction-diffusion, the approximate solution given by the explicit Euler time-discretization scheme converges to the exact time-continuous solution, provided that diffusion coefficient be sufficiently large. By “sufficiently large”, we mean that the diffusion coefficient value makes the one-sided Lipschitz constant of the reaction-diffusion system negative. We apply this result to solve a finite horizon control problem for a 1D reaction-diffusion example. We also explain how to perform model reduction in order to improve the efficiency of the method.
Fichier principal
Vignette du fichier
reaction.pdf (627.65 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02193769 , version 1 (24-07-2019)
hal-02193769 , version 2 (26-09-2019)
hal-02193769 , version 3 (09-12-2019)

Identifiants

Citer

Adrien Le Coënt, Laurent Fribourg. Guaranteed optimal reachability control of reaction-diffusion equations using one-sided Lipschitz constants and model reduction. 2019. ⟨hal-02193769v3⟩
104 Consultations
206 Téléchargements

Altmetric

Partager

More