Computing the Width of Non-deterministic Automata - Laboratoire Méthodes Formelles
Article Dans Une Revue Logical Methods in Computer Science Année : 2019

Computing the Width of Non-deterministic Automata

Denis Kuperberg
Anirban Majumdar
  • Fonction : Auteur
  • PersonId : 1059250

Résumé

We introduce a measure called width, quantifying the amount of nondetermin-ism in automata. Width generalises the notion of good-for-games (GFG) automata, that correspond to NFAs of width 1, and where an accepting run can be built on-the-fly on any accepted input. We describe an incremental determinisation construction on NFAs, which can be more efficient than the full powerset determinisation, depending on the width of the input NFA. This construction can be generalised to infinite words, and is particularly well-suited to coBüchi automata. For coBüchi automata, this procedure can be used to compute either a deterministic automaton or a GFG one, and it is algorithmically more efficient in the last case. We show this fact by proving that checking whether a coBüchi automaton is determinisable by pruning is NP-complete. On finite or infinite words, we show that computing the width of an automaton is EXPTIME-complete. This implies EXPTIME-completeness for multipebble simulation games on NFAs.
Fichier principal
Vignette du fichier
width_LMCS.pdf (458.26 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02383115 , version 1 (27-11-2019)

Identifiants

Citer

Denis Kuperberg, Anirban Majumdar. Computing the Width of Non-deterministic Automata. Logical Methods in Computer Science, 2019, 15, ⟨10.23638/LMCS-15(4:10)2019⟩. ⟨hal-02383115⟩
60 Consultations
308 Téléchargements

Altmetric

Partager

More