Article Dans Une Revue Logical Methods in Computer Science Année : 2021

A Complete Axiomatisation for Quantifier-Free Separation Logic

Résumé

We present the first complete axiomatisation for quantifier-free separation logic. The logic is equipped with the standard concrete heaplet semantics and the proof system has no external feature such as nominals/labels. It is not possible to rely completely on proof systems for Boolean BI as the concrete semantics needs to be taken into account. Therefore, we present the first internal Hilbert-style axiomatisation for quantifier-free separation logic. The calculus is divided in three parts: the axiomatisation of core formulae where Boolean combinations of core formulae capture the expressivity of the whole logic, axioms and inference rules to simulate a bottom-up elimination of separating connectives, and finally structural axioms and inference rules from propositional calculus and Boolean BI with the magic wand.
Fichier principal
Vignette du fichier
paper.pdf (778.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-03005864 , version 1 (28-09-2023)

Licence

Identifiants

Citer

Stéphane Demri, Etienne Lozes, Alessio Mansutti. A Complete Axiomatisation for Quantifier-Free Separation Logic. Logical Methods in Computer Science, 2021, 17 (3), pp.17:1--17:64. ⟨10.46298/lmcs-17(3:17)2021⟩. ⟨hal-03005864⟩
142 Consultations
32 Téléchargements

Altmetric

Partager

More